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Abstract

Compressed sensing is an important field with continuing advances in theory and

applications. This thesis provides contributions to both theory and application. Much

of the theory behind compressed sensing is based on uncertainty principles, which

state that a signal cannot be concentrated in both time and frequency. We develop a

new discrete uncertainty principle and use it to demonstrate a fundamental limitation

of the demixing problem, and to provide a fast method of detecting sparse signals.

The second half of this thesis focuses on a specific application of compressed sensing:

hyperspectral imaging. Conventional hyperspectral platforms require long exposure

times, which can limit their utility, and so we propose a compressed sensing platform

to quickly sample hyperspectral data. We leverage certain combinatorial designs to

build good coded apertures, and then we apply block orthogonal matching pursuit to

quickly reconstruct the desired imagery.
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RECENT ADVANCES IN COMPRESSED SENSING:

DISCRETE UNCERTAINTY PRINCIPLES AND

FAST HYPERSPECTRAL IMAGING

I. Introduction

Good decisions are typically informed by relevant data. Unfortunately, many

settings exhibit a bottleneck at the data-collection step, which presents an issue in

the face of urgency. Over the last decade, this limitation has spurred research in

speeding up data collection with a developing theory called compressed sensing.

The original motivation for compressed sensing research came from applications to

medical imaging, e.g., magnetic resonance imaging (MRI). Since the early 1980s, MRI

has granted doctors the ability to distinguish between healthy tissue and cancerous

tumors without the need for invasive surgical procedures. Unfortunately, MRI ma-

chines take a significant amount of scanning time to produce high-resolution images,

which are often necessary for diagnostics. The longer a patient is required to remain

still, the more likely she is to move, which causes irreparable distortions in the final

image. In the last decade, Candès, Romberg and Tao [1] showed that high-resolution

images, similar to those produced using MRI, can be reconstructed from very few

measurements, which in turn reduces the time required to collect the necessary data.

To achieve this speedup, Candès et al. leveraged the fact that the desired image is

nearly sparse in the wavelet domain [2].

More generally, compressed sensing seeks to solve the linear system Φx = y, where

Φ ∈ CM×N with M � N . Of course, since M � N , this underdetermined linear

system is impossible to uniquely solve using traditional linear algebra. However, if
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(a) (b) (c) (d)

Figure 1. (a) The Shepp–Logan phantom test image. (b) White pixels denote sample
locations of (a) in the Fourier domain. (c) The test image projected onto the span of
the sampled Fourier modes. (d) Reconstruction of (a) by minimizing total variation
subject to the Fourier samples. Perhaps surprisingly, the reconstruction is exact [1].

we make additional assumptions about x, they might be combined with the linear

data to uniquely determine the original vector x. For example, one might assume x

is K-sparse, i.e., at most K entries of x are nonzero. In many settings, this is a valid

signal model; for example, JPEG2000 exploits the fact that natural images are nearly

sparse in the wavelet domain [3, 4].

For a demonstration of compressed sensing, see Figure 1. Here, an image is

sampled in only a few locations in the Fourier domain. Traditionally, one might

project the image onto the span of these Fourier modes to get Figure 1(c), thereby

producing significant artifacts that would prevent proper diagnostics. However, the

image can be exactly recovered by instead minimizing a certain convex objective

function subject to the Fourier samples. This is the compressed sensing solution

that delivers high-resolution imagery from very few measurements. To see why this

works, first note that the sensing matrix must be special in order to provide complete

information. Indeed, if x is sparse but the rows of Φ happen to be orthogonal to x,

then Φx fails to distinguish x from the zero vector. This problem can be averted if Φ

satisfies the (2K, δ)-restricted isometry property (RIP), that is, if

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22

2



for every 2K-sparse x. The main result in compressed sensing is that solving

arg min ‖x‖1 subject to Φx = y

is equivalent to finding the sparsest x such that Φx = y provided Φ satisfies the

(2K, δ)-RIP with δ <
√

2 − 1 and the sparsest such x is K-sparse [5]. Thus, not

only do RIP matrices provide complete information about any K-sparse vector,

they also allow for reconstruction by `1 minimization, which can be implemented

using linear programming. Furthermore, if Φ is a random matrix (e.g., Φ has iid

Gaussian entries), then with high probability, Φ satisfies the (2K, δ)-RIP provided

K = Oδ(M/ polylogN) [6]. Therefore, the number of measurements required to effi-

ciently recover x scales linearly with the signal complexityK and does not significantly

depend on the size N of the signal.

The purpose of this thesis is to further develop the theory of compressed sensing

and related topics. In particular, we provide a new uncertainty principle (which

quantifies the sparsity level of any function relative to its Fourier transform) and we

also demonstrate the applicability of compressed sensing theory to fast hyperspectral

imaging. The following section details the applicability of these results.

1.1 Applications of uncertainty principles

Uncertainty principles have been studied with increasing frequency for over the

last sixty years [7]. The most basic form of the uncertainty principle is the follow-

ing assertion: A signal cannot be highly concentrated in both time and frequency,

illustrated in Figure 2. In particular, a Fourier transform pair x and x̂ cannot be

simultaneously sparse [7, 8, 9]. It wasn’t until more recently that uncertainty prin-

ciples were applied to sparse signal recovery problems, most notably by Donoho and

3
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Figure 2. (a) The function f(x) = exp(−10x2). (b) The Fourier transform of f , h(ω) =
1

2
√
5
exp(−ω2/40). Notice that f is narrow while h is wide. The uncertainty principle

contends that no function is simultaneously narrow in both the time and frequency
domains.

Stark in [8].

In this thesis, we develop a new version of the uncertainty principle for discrete

functions and discuss its applications to demixing problems and to the fast detection

of sparse signals. We briefly describe these problems below:

The demixing problem.

Digital signals are often corrupted by noise when transmitted. Thankfully, it

is sometimes possible to distinguish the noise from the desired signal. Assume the

desired signal x is sparse in the Fourier domain. If x has been corrupted by noise ε

that is sparse in the identity basis (think speckle), then we will observe z = x + ε.

The goal of demixing is to separate x from ε. In [10], Tropp showed that demixing

can be accomplished by solving

[I F ]v = Fz. (1)

4



The desired solution v? to (1) is a concatenation of Fx and ε, i.e.,

v? =

 Fx

ε

 .
Since v? is sparse, this problem may be solved using ideas from compressed sensing.

In particular, v? is likely the 1-norm minimizer subject to (1). However, suppose there

is a signal f that is sparse in both the identity and Fourier bases. Then F (x+f) and

ε− f are both sparse. Therefore,

v =

 F (x+ f)

ε− f


is also a sparse solution to (1). As such, we cannot guarantee recovery of v? using

compressed sensing methods because v? is not the only sparse solution.

Indeed, we need to understand how sparse a function can be in both the iden-

tity and Fourier bases in order to establish the inherent limitations on the demixing

problem. This is one motivation behind our study of uncertainty principles.

Fast detection of sparse signals.

Signal detection is a well-studied problem with a variety of applications. The goal

of signal detection is to distinguish between an information-bearing signal and mere

noise, making it a critical component of signals intelligence. Ideally, detection should

be performed as quickly as possible so as to promptly initialize further processing

and enable a timely decision. Hence, it is desirable to use as little computation as

possible to detect an information-bearing signal. Assume that a signal x is K-sparse.

Then by the uncertainty principle, Fx is not highly sparse, and so only a few random

samples in the Fourier domain should suffice to detect the signal. In Chapter III, we

5



will show that only O(K) random samples are required to detect a sparse signal, and

our detection method requires only O(K logN) time.

1.2 Applications to fast hyperspectral imaging

A standard digital camera captures and stores images using only red, green and

blue light channels. Combinations of these frequencies of light are then used by

computer screens to display photographs for human consumption. Hyperspectral

imaging involves collecting data at multiple wavelengths rather than just these three.

The advantage of collecting multiple spectral bands is the ability to glean information

about the chemical composition of the observed object [11]. As a defense application,

hyperspectral imaging is particularly important for analyzing the composition of det-

onations in war zones [12]. With this application in mind, we seek to observe brief and

localized events. The fact that the event is brief is a disadvantage since conventional

hyperspectral imaging platforms might not have time to capture the desired image.

On the other hand, the advantage of localized events is that they are spatially sparse,

allowing for compressed sensing to possibly overcome the event’s brevity.

Assume X = f(x, y, λ) is the data cube we would like to observe, where x and

y are the spatial coordinates and λ is a spectral coordinate, often referred to as a

spectral band. Conventional remote sensing platforms do not collect hyperspectral

data without some sort of scanning method. The three main scanning methods are

spectral, point, and line scanning [13]. Spectral scanning involves the platform only

obtaining information for a particular spectral band at a time. Point scanning (or

whisk-broom) methods collect all light channels at one point in space at a time. Line

scanning (or push-broom) methods observe an entire line in space at a time, mov-

ing across space. Therefore, this method collects two dimensional images with each

measurement, one spatial dimension and a spectral dimension [13]. The disadvantage

6



Figure 3. Example of data cube of hyperspectral imagery of stars. The spatial location
of a star is represented with x- and y-coordinates. The λ axis represents the spectral
bands of the data cube. The data cube is sparse since the distribution of stars in the
night sky is sparse and spectral bands are zero throughout empty space. Image of stars
from [14].

with each of these scanning methods is that they require a large amount of time to

capture the data cube X [11].

Suppose X is a hyperspectral image of the night sky as shown in Figure 3. We

know that stars are sparsely distributed throughout space, and so we may assume

that X is sparse. As such, compressed sensing methods might allow us to bypass the

limitations of conventional scanning. Along these lines, an alternative hyperspectral

imaging model, proposed by [15], uses a micro-mirror array (MMA) to capture the

entire data cube instantaneously (see Figure 4). Specifically, the MMA either reflects

all light at a point in space through a prism onto a charge-coupled device (CCD) or

reflects the light away from the CCD.

Given compressive measurements of the data cube, we need to apply a reconstruc-

tion algorithm. To this end, we will choose an algorithm that exploits the additional

structure of the desired data cube. Indeed, notice in Figure 3 that the nonzero en-

7



Figure 4. Example of a compressive remote sensing platform. Each exposure uses a
different configuration of the micro-mirror array (MMA). A mirror in the MMA either
reflects all light towards the prism or reflects all light away from the prism. After the
light is dispersed by the prism, it is collected on the charge-coupled device.

tries of the data cube are in batches with common spatial coordinates. We call these

batches, blocks and we say the data cube exhibits block sparsity. Block sparsity is more

informative than regular sparsity, and recovery algorithms that use this information

tend to perform better [16, 17]. One such recovery algorithm, developed in [16], is

block orthogonal matching pursuit (BOMP). As the name suggests, this algorithm is a

block version of a sparsity-based reconstruction algorithm called orthogonal matching

pursuit (OMP). In Chapter IV, we apply this algorithm to simulated data cubes of

star data to demonstrate the plausibility of data cube reconstruction from few hyper-

spectral exposures. In particular, our simulations suggest that one can reconstruct

data cubes like the one depicted in Figure 3 with less than a third of the exposures

required by conventional scanning methods.

8



1.3 Outline

This introduction serves to build the context of the theory developed in Chap-

ter II, as well as the real-world problems that will benefit from our results. In Chap-

ter II, we will discuss the 0-norm uncertainty principle and give a concise proof of the

Donoho–Stark uncertainty principle developed in [8]. Additionally, we introduce and

characterize equality in a new mixed-norm uncertainty principle. Lastly, we derive a

Fourier transform pair that achieves near equality in the Donoho–Stark uncertainty

principle as well as the mixed-norm uncertainty principle.

In Chapter III, we consider two applications of the mixed-norm uncertainty princi-

ple. First, we show that demixing problems cannot break the square-root bottleneck,

i.e., in the worst case one can only stably demix K-sparse signals if K = O(
√
N),

where N is the signal dimension [10, 18]. Second, we show how to detect K-sparse

signals from only O(K) measurements.

In Chapter IV, we focus on the hyperspectral imaging problem. First we use

combinatorial designs to devise a sequence of micro-mirror orientations that allow

us to reconstruct the desired hyperspectral imagery with block orthogonal matching

pursuit. Second, we provide simulation results that demonstrate the feasibility of

compressive hyperspectral imaging.

We conclude in Chapter V with ideas for future work.

9



II. Discrete uncertainty principles

In this chapter, we discuss three discrete uncertainty principles. We begin with

a proof of the 0-norm uncertainty principle [19] and a new efficient proof of the

Donoho–Stark uncertainty principle (Theorem 2 in [8]). Next, we discuss a new

uncertainty principle that we call the mixed-norm uncertainty principle. Later we

prove a surprising result that equality in the mixed-norm uncertainty principle is

achieved precisely when equality is achieved in the 0-norm uncertainty principle.

Lastly, we show that a discretized and periodized Gaussian achieves near equality

in both the Donoho–Stark uncertainty principle and the mixed-norm uncertainty

principle.

2.1 Background

Before we begin, we will introduce some notation and definitions. Let G be an

abelian group and let T denote the complex unit circle. Define a character of G to

be a function χ : G→ T such that

χ(g1 + g2) = χ(g1)χ(g2) ∀g1, g2 ∈ G. (2)

Let Ĝ be the set of all homomorphisms χ that satisfy (2). The dual of G, namely

Ĝ, is also an abelian group (see Appendix 1.1). Let `(G) be the Hilbert space of all

functions from G to C. We denote the Fourier transform of a function f ∈ `(G) by

f̂ ∈ `(Ĝ). We formally define the Fourier transform from `(G) to `(Ĝ) below.

Definition 1. The Fourier transform F : `(G)→ `(Ĝ) and its inverse are given by

(Ff)[χ] :=
1√
|G|

∑
g∈G

f [g]χ[g], (F−1h)[g] :=
1√
|G|

∑
χ∈Ĝ

h[χ]χ[g],

10



respectively.

Another useful definition is the support of a function, denoted supp(·). The sup-

port of a function f on its domain D is defined as

supp(f) := {x ∈ D : f(x) 6= 0}.

The 0-norm is then given by ‖f‖0 = | supp(f)|. We note that the 0-norm is not

technically a norm, since it violates homogeneity.

2.2 The 0-norm uncertainty principle

In this section, we introduce the 0-norm uncertainty principle (see [19]). Through-

out this thesis, we will assume that |G| = N .

Theorem 1. Given an abelian group G of size N and f ∈ `(G), we have

| supp(f)|| supp(f̂)| ≥ N.

Proof. By the triangle inequality and Definition 1,

max
χ∈Ĝ
|f̂ [χ]| ≤

∣∣∣∣∣ 1√
N

∑
g∈G

f [g]

∣∣∣∣∣ ≤ 1√
N

∑
g∈G

|f [g]| . (3)

For any y ∈ C, define sgn(y) as

sgn(y) :=


y/|y| if y 6= 0

0 if y = 0.

11



We know that |f [g]|2 = f [g]f [g]. Dividing by |f [g]| yields

|f [g]| = f [g]
f [g]

|f [g]|
= f [g]sgn f [g]. (4)

Substituting (4) into (3) gives

max
χ∈Ĝ

∣∣∣f̂ [χ]
∣∣∣ ≤ 1√

N

∑
g∈G

f [g]sgn f [g] =
1√
N
〈f, sgn f〉 ≤ 1√

N
‖f‖2 ‖sgn f‖2 , (5)

where the last inequality is true by the Cauchy–Schwarz inequality. By definition of

‖ · ‖2, we have

‖f‖2 ‖sgn f‖2 = ‖f‖2

(∑
g∈G

|sgn f [g]|2
) 1

2

= ‖f‖2 |supp(f)|
1
2 = ‖f̂‖2 |supp(f)|

1
2 , (6)

where the last equality is a result of Plancherel’s theroem. Note that for all y ∈ `(G),

‖y‖2 ≤ | supp(y)|1/2‖y‖∞. Therefore,

‖f̂‖2 ≤ | supp(f̂)|1/2 max
χ∈Ĝ
|f̂ [χ]|. (7)

Combining (5), (6), and (7) yields

max
χ∈Ĝ
|f̂ [χ]| ≤ 1√

N
max
χ∈Ĝ
|f̂ [χ]|| supp(f)|1/2| supp(f̂)|1/2.

Taking the square and rearranging then gives

| supp(f)|| supp(f̂)| ≥ N.

We will study two robust versions of Theorem 1. First is the uncertainty principle

introduced by Donoho and Stark [8]. The second theorem is in terms of a numerically

12



robust analog of the 0-norm called numerical sparsity (see Definition 3).

2.3 The Donoho–Stark uncertainty principle

In this section, we introduce the Donoho–Stark uncertainty principle and provide

a more efficient proof than the one provided in [8]. Define T ⊆ G, W ⊆ Ĝ and let

PT , PW : `(G)→ `(G) be time- and frequency-limiting operators defined by

(PTf) [t] :=

 f [t] if t ∈ T

0 otherwise

and

(PWf) [t] :=
1√
N

∑
w∈W

e
2πisw
N f̂ [w]

respectively. The projection operator PT removes any part of the function f that is

supported outside the index set T . Similarly, PW filters f so that f̂ is supported on

the index set W .

Theorem 2 (Donoho–Stark [8]). Let G be an abelian group of size N and suppose

f ∈ `(G) is concentrated in both time and frequency:

‖f − PTf‖2 ≤ εT‖f‖2, ‖f − PWf‖2 ≤ εW‖f‖2,

for some εT , εW ≥ 0. Then

|T ||W | ≥ N
(
1− (εT + εW )

)2
.

Proof. Assume without loss of generality that ‖f‖ = 1. By the triangle inequality,

1− ‖PWPTf‖ ≤ ‖f − PWPTf‖ ≤ ‖f − PWf‖+ ‖PW (f − PTf)‖. (8)

13



Since PW is a projector,

‖f − PWf‖+ ‖PW (f − PTf)‖ ≤ ‖f − PWf‖+ ‖f − PTf‖ ≤ εW + εT . (9)

Combining (8) and (9), and then rearranging produces

1− (εW + εT ) ≤ ‖PWPTf‖ ≤ ‖PWPT‖2→2 ≤ ‖PWPT‖F ,

where the second inequality follows from the definition of the induced norm and ‖·‖F

denotes the Frobenius norm. We claim ‖PWPT‖2F = |W ||T |/N , which implies the

result.

To prove our claim, defineDS := diag(1S), where 1S denotes the indicator function

of the set S. Note that PT = DT and PW = F−1DWF . Therefore,

‖PWPT‖2F = ‖F−1DWFDT‖2F = ‖DWFDT‖2F =
∑
i∈W
j∈T

|F [i, j]|2 =
|T ||W |
N

,

completing the proof.

2.4 Near equality in the Donoho–Stark uncertainty principle

In this section, we show that a discretized and periodized Gaussian function

achieves near equality in the Donoho–Stark uncertainty principle. In particular, we

have the following result:

Theorem 3. For every ε > 0, there exists C > 0 such that for every sufficiently large

N , there exists f ∈ `(ZN), T ⊂ ZN , W ⊂ ẐN such that

‖f − PTf‖2 ≤ ε‖f‖2, ‖f − PWf‖2 ≤ ε‖f‖2
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Figure 5. (a) An example of a Gaussian function f(x) = e−Nπx
2

, with N = 81. (b)
The Gaussian function from (a) sampled at every multiple of 1/N and periodized. This
function is an eigenvector of the discrete Fourier transform, and it has around

√
N large

entries. We leverage these facts to demonstrate near equality in both the Donoho–Stark
and mixed-norm uncertainty principles.

and

|T ||W | ≤ CN logN. (10)

Such a construction will demonstrate that Theorem 2 is nearly tight for all suffi-

ciently large N (see Figure 5). Before providing the construction rigorously, we begin

with a definition:

Definition 2. Let Schwarz space be the set

S =

{
f ∈ C∞(R) : sup

x∈R
|xαf (β)(x)| <∞ ∀α, β

}
.

Theorem 4. For all f ∈ S, if

h[j] =
∑
j′∈Z

f

(
j

N
+ j′

)
,

15



then

(FNh)[k] =
√
N
∑
k′∈Z

f̂ (k + k′N) ,

where FN denotes the Fourier transform on ZN .

Proof. First, by the definition of FN

(FNh) [k] =
1√
N

∑
j∈ZN

(∑
j′∈Z

f

(
j

N
+ j′

))
e
−2πijk
N .

Apply Corollary 1 (Appendix 1.2) and rearrange to get

(FNh) [k] =
1√
N

∑
j∈ZN

(∑
q∈Z

(FRf)[q]e2πijq/N

)
e−2πijk/N

=
1√
N

∑
q∈Z

(FRf)[q]
∑
j∈ZN

(
e2πi(q−k)/N

)j
.

Then the geometric sum formula (see Claim 9 in Appendix 1.4) implies

1√
N

∑
q∈Z

(FRf)[q]
∑
j∈ZN

(
e2πi(q−k)/N

)j
=
√
N

∑
q=k+NZ

(FRf)[q]

Let k′ := (q − k)/N . By change of variables, we are done:

(FNH) [k] =
√
N
∑
k′∈Z

(FRf) (k + k′N).

Armed with Theorem 4 and the background information in Appendix 1.3, we can

find the Fourier transform pair we seek:

Theorem 5. If fs(x) := 2
1
4√
s
e−π(

x
s )

2

, then (Ff)s(ξ) := f 1
s
(ξ).

Proof. By the definition of fs, we know that for some function h,

fs(ξ) = F
(
h
(x
s

))
= s(Fh)(sξ)

16



where the last equality is due to Claim 8. By definition of h, we get

s(Fh)(sξ) = 2
1
4
√
se−π(ξs)

2

= f1/s(ξ).

Given the Fourier transform pair fs and f1/s and Theorem 4, we can derive the

following Fourier transform pair.

Lemma 1. Denote

hs[n] :=
∑
n′∈Z

fs

( n
N

+ n′
)
.

Then, Fhs[n] = h 1
Ns

[n].

Proof. Given fs and the definition of hs,

hs[n] :=
∑
n′∈Z

fs

( n
N

+ n′
)

=
∑
n′∈Z

2
1
4

√
s
e−π(

n
N
+n′)

2
( 1
s)

2

.

Theorem 4 and Lemma 5 then give

Fhs[n] :=
√
N
∑
n′∈Z

f̂s(n+ n′N) =
√
N
∑
n′∈Z

f1/s(n+ n′N).

By definition of f1/s

√
N
∑
n′∈Z

f1/s(n+ n′N) =
√
N
∑
n′∈Z

2
1
4
√
se−π(S(n+Nn

′))2

= 2
1
4

√
Ns
∑
n′∈Z

e−π(Ns(
n
N
+n′))

2

= h 1
Ns

[n]

Let h(K) be defined as follows:

h(K)[n] :=

√
N

K

∑
n′∈Z

e
−π
(
n+n′N
K

)2

. (11)

17



By Lemma 1, we can see that that the Fourier transform of h(K) is simply h(N/K).

The following facts about h(K) will be useful for proving near equality.

Lemma 2. Define h(K) as in (11). Then

‖h(K)‖22 ≥
N√

2
− N

K
.

Proof. First, we expand |w|2 = ww to get

‖h(K)‖22 =
∑
n∈ZN

∣∣∣∣∣
√
N

K

∑
n′∈Z

e
−π
(
n+n′N
K

)2

∣∣∣∣∣
2

=
N

K

∑
n∈G

∑
n′∈Z

∑
n′′∈Z

e
−π
[(

n+n′N
K

)2
+
(
n+n′′N
K

)2
]
.

Since all of the terms in the sum are nonnegative, we may infer a lower bound by

discarding the terms for which n′′ 6= n′. This yields the following:

‖h(K)‖22 ≥
N

K

∑
n∈G

∑
n′∈Z

e
−2π

(
n+n′N
K

)2

=
N

K

∑
m∈Z

e−2π
m2

K2 ≥ N

K

(∫ ∞
−∞

e−2π
x2

K2 dx− 1

)
,

where the last inequality follows from an integral comparison. The result then follows

from computing the integral.

Lemma 3. If h(K) is defined as in (11) and 0 ≤ n ≤ n′ ≤ N
2

, then h(K)[n] ≥ h(K)[n′].

Proof. It suffices to show that e−π(
n
K )

2

≥ e
−π
(
n′
K

)2

+ e
−π
(
n′−N
K

)2

, which is true if

e−π(
n
K )

2

≥ e−π(
n+1
K )

2

+ e−π(
N/2
K )

2

. Define a := e−
π
K2 . Then it suffices to show that

an
2 ≥ a(n+1)2 + a(N2 )

2

.

Dividing both sides by an
2

yields

1 ≥ a2n+1 + a(N2 )−n2

= a2n+1 + a(N2 −n)(
N
2
+n) ≥ a+ a

N
2 .

18



The last inequality is from the fact that 2n + 1 ≥ 1 and
(
N
2
− n

) (
N
2

+ n
)
≥ N

2
.

The above implies that e−
π
K

2

= a ≥ 1
2
, which is true because of our assumption that

K ≥ 4.

We are now ready to prove the main result of this section.

Proof of Theorem 3. Take f = h(K) with K =
√
N , and so f̂ = f . It is then reason-

able to take T = W and εT = εW . With this, in order to show that Theorem 2 is tight

for h(K), it suffices to find T such that (10) is satisfied and ‖h(K)−PTh(K)‖ < εT‖h(K)‖.

We will find a p > 0 such that

f [p] < δ (12)

for some δ. Then T = {n ∈ ZN : |n| < p}. By Lemma 3,

f [n] ≤ f [p] < δ ∀n 6∈ T

and so

‖f − PTf‖2 ≤ (N − |T |)δ2 ≤ Nδ2 ≤ 2δ2‖f‖2,

where the last inequality follows from Lemma 2 and the assumption that N ≥ 16.

Thus, ‖f − PTf‖ ≤ εT‖f‖ for εT =
√

2δ.

Also, by our choices of W, f, and εW we have

‖f − PWf‖ = ‖f − F−1PTFf‖ = ‖F−1(Ff − PTFf)‖ = ‖Ff − PTFf‖.

We know that f = Ff . Therefore,

‖Ff − PTFf‖ = ‖f − PTf‖ ≤ εT‖f‖ = εW‖f‖.
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As such, f will satisfy the hypotheses of Theorem 2. If, in addition, we find a small

p satisfying (12), then we will have |T ||W | = (2p− 1)2 small as well, so Theorem 2 is

nearly tight for this choice of f .

By Lemma 3 and symmetry, h(K)[p] ≥ h(K)[n] ∀n ∈ {p, . . . , N − p}. Thus, it

suffices to show a smallest p possible such that h(K)[p] < δ and p = O(K). In order

to find p, we will find an upper bound on h(K) in terms of n and then set n = p.

h(K)[n] =

√
N

K


∑
n′∈Z∣∣∣n+n′N
K

∣∣∣≥t
e
−π
(
n+n′N
K

)2

+
∑
n′∈Z∣∣∣n+n′N
K

∣∣∣<t
e
−π
(
n+n′N
K

)2

 (13)

Assume t ≥
√
N . We will bound each term in (13) separately, beginning with the

first term. Let n = α
√
N , where α ≤ 1

2

√
N . Then,

∑
n′∈Z∣∣∣n+n′N
K

∣∣∣≥t
e
−π
(
n+n′N
K

)2

=
∑
n′∈Z

|α+n′√N|≥t

e−π(α+n
′√N)2 =

1√
N

∑
n′∈Z

|α+n′√N|≥t

√
Ne−π(α+n

′√N)2 .

By our assumption that t ≥
√
N , the above is bounded by

1√
N

∫ ∞
−∞

e−πy
2

dy =
1√
N
.

Now, we will bound the second term in (13). Because α ≤ 1
2

√
N , e−π(αn

′√N)2 is

maximized for n′ = 0. Assume, t = α
√
N . Then,

|n+ n′N

K
| = |α + n′

√
N | < t = α

√
N.
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Because α > 0, the above implies |1/
√
N + n′/α| < 1. Therefore

−1 <
1√
N

+
n′

α
< 1.

Solving the inequality for n′, we get

−α
(

1 +
1√
N

)
< n′ < −α

(
1 +− 1√

N

)
.

Therefore, |n′| ≤ (1 + o(1))α. Hence, the second term in (13) is bounded by

#{n′ : |α + n′
√
N | < t} · eiπα2 ≤ 3αe−πα

2

.

Thus, the upper bound for (13) is:

h(K)[n] ≤
√
N

K

(
1√
N

+ 3αe−πα
2

)
= N−1/4 +N1/43αe−πα

2

. (14)

Assuming N−1/4 < δ/2, we will find a lower bound on α such that the above is less

than δ. Therefore, we need to find an α such that N1/43αe−πα
2 ≤ δ/2. We know that

αe−πα
2
< eα

2
e−πα

2
. Therefore, it suffices to find an α such that

(1− π)α2 < log

(
δ

6N1/4

)
.

Thus, we need α such that

α >

[
1

π − 1
log

(
6N1/4

δ

)]1/2
.

Therefore, for any fixed δ, we have h(K)[C(δ)N1/2 log1/2N ] < δ for all sufficiently
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large N . Thus,

|T ||W | ≤ CN logN

as desired.

2.5 A mixed-norm uncertainty principle

In this section, we define numerical sparsity and use it to formulate a new mixed-

norm uncertainty principle. We also provide three different proofs of this uncertainty

principle.

Definition 3. We define the numerical sparsity of x ∈ `(G), denoted ns(x), as

ns(x) :=
‖x‖21
‖x‖22

.

The concept of numerical sparsity is introduced in [20] as a stable lower bound on

the sparsity of an unknown signal, which we prove below. This property of numerical

sparsity is useful in the context of our discussion of compressed sensing.

Lemma 4. Let f ∈ `(G). Then ns(f) ≤ ‖f‖0.

Proof. By the Cauchy–Schwarz inequality we know that

‖f‖1 = 〈sgn(f), f〉 ≤ ‖ sgn(f)‖2‖f‖2 =
√
‖f‖0‖f‖2.

Rearranging and Definition 3 then give

ns(f) =
‖f‖21
‖f‖22

≤ ‖f‖0‖f‖
2
2

‖f‖22
= ‖f‖0,

thus, proving the statement.

Using Definition 3, we have the following uncertainty principle.
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Theorem 6 (Mixed-norm uncertainty principle). Given an abelian group G of size

N and f ∈ `(G), we have

ns(f) ns(f̂) ≥ N. (15)

Notice that by Lemma 4, the 0-norm uncertainty principle is immediately implied

by the mixed-norm uncertainty principle. We have two similar proofs of Theorem 6

(both of which will be used later to characterize equality in the uncertainty principle)

and a third very different proof that uses interesting techniques. We begin with the

two similar proofs.

Proof 1 of Theorem 6. Without loss of generality, assume ‖f‖2 = 1. By Holder’s

inequality,

ns(f) ns(f̂) =
‖f‖21
‖f‖22

· ‖f̂‖
2
1

‖f̂‖22
≥ ‖f‖

2
1

‖f‖22
· ‖f̂‖

2
2

‖f̂‖2∞
=
‖f‖21
‖f̂‖2∞

,

where the last equality is due to Plancherel’s theorem.

Additionally, we know that

‖f̂‖∞
‖f‖1

≤ sup
f 6=0

‖Ff‖∞
‖f‖1

= ‖F‖1→∞ =
1√
N
,

where F is the Fourier transform operator and ‖ · ‖1→∞ is the induced norm.

Therefore

‖f‖21
‖f̂‖2∞

≥ 1

‖F‖21→∞
= N,

and so

ns(f) ns(f̂) ≥ N.

Proof 2 of Theorem 6. Without loss of generality, assume ‖f‖2 = 1. By Hölder’s

inequality,

ns(f) ns(f̂) =
‖f‖21
‖f‖22

· ‖f̂‖
2
1

‖f̂‖22
≥ ‖f‖

2
2

‖f‖2∞
· ‖f̂‖

2
1

‖f̂‖22
=
‖f̂‖21
‖f‖2∞

,
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where the last equality is due to Plancherel’s theorem.

Define y := f̂ , then

‖F−1y‖∞
‖y‖1

≤ sup
y 6=0

‖F−1y‖∞
‖y‖1

= ‖F−1‖1→∞ =
1√
N

where F−1 is the inverse Fourier transform operator, and so

‖f̂‖21
‖f‖2∞

=
‖y‖21

‖F−1y‖2∞
≥ 1

‖F−1‖21→∞
= N.

Therefore

ns(f) ns(f̂) ≥ N.

A third proof of Theorem 6 uses interesting techniques. We start by proving a

few lemmas.

Lemma 5. Let G be a finite abelian group and suppose f ∈ `(G) satisfies

‖f‖1 ≤ C
√
K‖f‖2. Then there exists T ⊆ G of size K such that

‖f − PTf‖2 ≤ C‖f‖2.

Proof. Let T0 ⊆ G denote the indices of the K largest entries of f in absolute value,

and for each j ≥ 1, let Tj denote the indices of the K largest entries of f not covered

by Ti for i < j. Then

‖PTj+1
f‖2 ≤

√
K max

g∈Tj+1

|f [g]| ≤
√
K min

g∈Tj
|f [g]| ≤ 1√

K
‖PTjf‖1

for every j ≥ 0. As such,

‖f − PT0f‖2 =

∥∥∥∥∑
j≥1

PTjf

∥∥∥∥
2

≤
∑
j≥1

‖PTjf‖2 ≤
1√
K

∑
j≥0

‖PTjf‖1 ≤ C‖f‖2,

where the last step uses the hypothesis. Taking T = T0 then gives the result.
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What follows is a loose inequality that we will use along with other techniques to

prove Theorem 6.

Lemma 6. Let G be a finite abelian group. Then every f ∈ `(G) satisfies

‖f‖1‖f̂‖1 ≥ C
√
N‖f‖22,

where C = 1
9
(1− 1√

2
).

Proof. Let ‖f‖2 = 1 without loss of generality (the result clearly holds for f [g] = 0).

First, we quickly rule out the case where b9‖f‖21c > N . Here, we have ‖f‖1 ≥
√
N/3

and ‖f̂‖1 ≥ ‖f̂‖2 = ‖f‖2 = 1, and so

‖f‖1‖f̂‖1 ≥
1

3

√
N ≥ C

√
N‖f‖22,

as desired.

For the more interesting case where b9‖f‖21c ≤ N , let T ⊆ G denote the indices

of the b9‖f‖21c largest entries of f in absolute value, and W ⊆ Ĝ the indices of

the b9‖f‖21c largest entries of f̂ (this is possible since b9‖f‖21c ≤ N). Also, take

εT := ‖f‖1/
√
|T | and εW := ‖f̂‖1/

√
|W |. Then

‖f‖1 =
‖f‖1√
|T |

√
|T |‖f‖2 = εT

√
|T |‖f‖2,

and similarly, ‖f̂‖1 = εW
√
|W |‖f̂‖2. As such, Lemma 5 implies that f satisfies the

hypothesis of Theorem 2, and so

(
‖f‖1
εT
· ‖f̂‖1
εW

)2

= |T ||W | ≥ N
(
1− (εT + εW )

)2
.
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We claim that εT , εW ∈ [1/3, 1/
√

8], which implies the result:

‖f‖21‖f̂‖21 ≥
1

81

(
1− 1√

2

)2

N = C2N‖f‖42.

Rearranging then yields

‖f‖21‖f̂‖21 ≥ N(εT εW (1− (εT + εW )))2.

To verify the claim, note that b9‖f‖21c ≤ 9‖f‖21, and so

εT =
‖f‖1√
|T |

=
‖f‖1√
b9‖f‖21c

≥ ‖f‖1√
9‖f‖21

=
1

3
.

Also, since ‖f‖1 ≥ ‖f‖2 = 1, we have b9‖f‖21c ≥ 9‖f‖21 − 1 ≥ 8‖f‖21, which similarly

implies εT ≤ 1/
√

8. The same logic gives εW ∈ [1/3, 1/
√

8].

Notice that Lemma 6 is a weak version of Theorem 6, but paradoxically, it actually

implies Theorem 6. This can be proved using a technique called the tensor power trick

by Tao [21]. First, we define tensor power.

Definition 4. For g1, · · · , gk ∈ G the tensor power of a function f ∈ `(G), denoted

f⊗k is defined as

f⊗k[g1, · · · , gk] := f [g1] · · · f [gk].

where (g1, · · · gk) ∈ Gk.

In order to use f⊗k and its Fourier transform we need to understand Ĝk. The

tensor power trick is only useful if we can show that Ĝk = Ĝk. Appendix 1.1 gives

details that prove this statement. Since Ĝk = Ĝk, we know f̂⊗k = f̂⊗k. With this

information, we can prove the following lemmas about f⊗k and f̂⊗k:
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Lemma 7. Let p ≥ 1 and f⊗k be defined as above. Then

‖f⊗k‖p = ‖f‖kp.

Proof. We begin with the definition of ‖f⊗k‖pp.

‖f⊗k‖pp =
∑

(g1,···gk)∈Gk
|f⊗k[g1, · · · , gk]|p =

∑
g1∈G

· · ·
∑
gk∈G

|f [g1] · · · f [gk]|p

=
∑
g1∈G

|f [g1]|p · · ·
∑
gk

|f [gk]|p =
(
‖f‖pp

)k
.

Taking the pth root of each side yields the result. Therefore, ‖f⊗k‖p = ‖f‖kp.

Lemma 8. Let f⊗k be defined as above. Then

‖f̂⊗k‖1 = ‖f̂‖k1.

Proof. By definition of the Fourier transform, and Claims 3 and 5 in Appendix 1.1,

‖FGkf⊗k‖1 =
∑
χ∈Ĝk

|(FGkf⊗k)[χ]| =
∑
χ1∈Ĝ

· · ·
∑
χk∈Ĝ

|(FGf)[χ1] · · · (FGf)[χk]|

=
∑
χ1∈Ĝ

|(FGf)[χ1]| · · ·
∑
χk∈Ĝ

|(FGf)[χk]|.

where the last term is the definition of ‖FGf‖k1. Therefore ‖FGkf⊗k‖1 = ‖FGf‖k1.

Now, we are ready to prove Theorem 6 using the tensor power trick.

Proof 3 of Theorem 6. Due to Plancherel’s theorem we can rewrite (15) as

‖f‖1‖f̂‖1 ≥
√
N‖f‖22
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By Lemmas 6, 7 and 8 and we know that

‖f⊗k‖1‖f̂⊗k‖1 ≥ C
√
Nk‖f⊗k‖22

implies

‖f‖k1‖f̂‖k1 ≥ C
(√

N
)k
‖f‖2k2 .

Taking the kth root of both sides yields

‖f‖1‖f̂‖1 ≥ C1/k
√
N‖f‖22.

Taking the limit as k →∞ we get C1/k → 1. Thus,

‖f‖1‖f̂‖1 ≥
√
N‖f‖22,

completing the proof.

2.6 Equality in the mixed-norm uncertainty principle

In this section, we will prove a surprising result: that equality in the mixed-norm

uncertainty principle is achieved if and only if equality is achieved in the 0-norm

uncertainty principle (the “only if” direction is particularly surprising considering

Lemma 4). In order to satisfy equality in Theorem 6, the Fourier transform pair f

and f̂ must have a specific structure:

Theorem 7. If f satisfies ns(f) ns(f̂) = N , then f = cMα1A where c ∈ C, 1A is

the indicator function for some set A, and Mα is the modulation operator defined as

(Mαf)[n] := f [n]e2πiαn/N .

Proof. We can see from the first two proofs of Theorem 6 that in order to achieve
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equality in Theorem 6, f and f̂ must satisfy equality in Holder’s inequality, specifi-

cally,

‖f‖1‖f‖∞ = ‖f‖22, ‖f̂‖1‖f̂‖∞ = ‖f̂‖22. (16)

To achieve the first equality in (16),

∑
n∈G

|f [n]|2 = ‖f‖22 = ‖f‖1‖f‖∞ = max
m∈G
|f [m]|

∑
n∈G

|f [n]| =
∑
n∈G

max
m
|f [m]||f [n]|.

Therefore, maxm∈G |f [m]| = |f [n]| for all n such that f [n] 6= 0. Similarly, in order

for the second equality in (16) to be true, maxm∈Ĝ |f̂ [m]| = |f̂ [n]| for all n such that

f̂ [n] 6= 0. The additional constraint for f and y := f̂ to satisfy equality in Theorem 6

is equality in the induced norm:

‖Ff‖∞ = ‖F‖1→∞‖f‖1, ‖F−1y‖∞ = ‖F−1‖1→∞‖y‖1. (17)

By definition of the Fourier transform,

‖Ff‖∞ = max
m∈Ĝ
|Ff [m]| = max

m∈Ĝ

∣∣∣∣∣ 1√
N

∑
n∈G

f [n]e−2πimn/N

∣∣∣∣∣ =

∣∣∣∣∣ 1√
N

∑
n∈G

f [n]e−2πim̃n/N

∣∣∣∣∣
where m̃ is the index that achieves this maximum. We know that ‖F‖1→∞ = 1/

√
N .

Therefore, we we have

1√
N
‖f‖1 =

1√
N

∑
n∈G

|f [n]| = 1√
N

∑
n∈G

∣∣f [n]e−2πim̃n/N
∣∣

where the last equality comes from the fact that |e−2πim̃n/N | = 1. Let

v[n] := f [n]e−2πim̃n/N . Then we can rewrite the first equality in (17) as

∣∣∣∣∣∑
n∈G

v[n]

∣∣∣∣∣ =
∑
n∈G

|v[n]|.
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The statement is true if and only if for all indices n,m such that v[n] 6= 0 and

v[m] 6= 0, sgn(v[n]) = sgn(v[m]). Thus, ∃c ∈ C and z ≥ 0 entrywise such that v = cz.

Substituting in the definition of v and solving for f we get

f [n] = cz[n]e2πinm̃/N .

Therefore, to satisfy equality in Theorem 6, f and f̂ have the form f = cMα1A.

Theorem 7 above can be used to prove the main result of this section:

Theorem 8. ns(f) ns(f̂) = N if and only if ‖f‖0‖f̂‖0 = N .

Proof. By Lemma 4 and Theorem 1, we know that

‖f‖0‖f̂‖0 ≥ ns(f) ns(f̂) ≥ N.

Therefore, functions which satisfy equality for Theorem 6 form a subset of the func-

tions that achieve equality for Theorem 1.

Assume that f satisfies equality in Theorem 6. Then using Theorem 7, the nu-

merical sparsity of f can be calculated as follows:

ns(f) =
‖f‖21
‖f‖22

=

(∑N
n=1 |f [n]|

)2
‖f‖∞‖f‖1

(∑N
n=1 |CMα1A[n]|

)2
C ·
∑N

n=1 |CMα1A[n]|
=
‖f‖20 · C2

‖f‖0 · C2
= ‖f‖0.

Thus, the set of functions that achieve equality in Theorem 6 is the same set that

achieves equality in Theorem 1.

Consider the case when K divides N and f is a Dirac comb supported on multiples

of K. It is well known that f̂ is a Dirac comb supported on multiples of N/K, and

so ‖f‖0‖f̂‖0 = N . Thus, by Theorem 8, f achieves equality in Theorem 6 in this

special case. As such, it is possible to nontrivially achieve equality in Theorem 6 if
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and only if N is composite (the “only if” direction follows from the fact that ‖f‖0

and ‖f̂‖0 are both integers). In the next section, we give an example of a function

that achieves near equality in Theorem 6 regardless of N .

2.7 Near equality in the mixed-norm uncertainty principle

In this section, we will show that a discretized and periodized Gaussian function

achieves near equality in the mixed-norm uncertainty principle in the following sense:

Theorem 9. There exists a C > 0 independent of N and f ∈ `(ZN) such that

ns(f) ns(f̂) ≤ CN.

Once again, let f = h(K) as defined in (11) with K =
√
N . Since f̂ = f , it

suffices to show that ns(f) ≤
√
CN . A proof of this statement requires the use of the

following lemma:

Lemma 9. Given h(K) where K =
√
N , ‖h(K)‖1 ≤ 3

2
N3/4.

Proof. By definition,

‖h(K)‖1 =
N∑
n=1

|h(K)[n]| =
N∑
n=1

N
1
4

∣∣∣∣∣∑
n′∈Z

exp

[
−π
(

n√
N
− n′
√
N

)2
]∣∣∣∣∣ .

Because exp(y) ≥ 0 for all y ∈ R the above we then have

‖h(K)‖1 =
N∑
n=1

N
1
4

∑
n′∈Z

exp

[
−π
(

n√
N
− n′
√
N

)2
]
. (18)

The following is an upper bound on (18) due to integral comparison.

N
1
4

N∑
n=1

∫ ∞
−∞

exp

[
−π
(

n√
N
− x
√
N

)2
]
dx+N

1
4

N∑
n=1

exp

[
−π
(

n√
N

)2
]
. (19)
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First we will find an upper bound on the left hand side of (19). Substituting

u =
√
π(n/

√
N + x

√
N) into the first term of (19) gives

N
1
4

N∑
n=1

1√
πN

∫ ∞
−∞

exp[−u2]du+N5/4 = N
1
4

N∑
n=1

√
π√
πN

= N
3
4 .

The upper bound on the second term of (19) is more difficult to compute. By sym-

metry,

N
1
4

N∑
n=1

exp

[
−π
(

n√
N

)]
= N

1
4

−1∑
n=−N

exp

[
−π
(

n√
N

)]
≤
∫ −1
−N

exp

[
−πx

2

N

]
dx.

We know that

∫ −1
−N

exp

[
−πx

2

N

]
dx ≤

∫ 0

−∞
exp

[
−πx

2

N

]
dx =

√
N

π

∫ 0

−∞
exp[−u2]du =

√
N

2
,

where u =
√
π/Nx. Therefore, the upper bound on the second term of (19) is N3/4/2.

Combining this upper bound with the one for the first term yields the result.

Proof of Theorem 9. It is straightforward to construct our upper bound on ns(h(K))

using a combination of Lemma 9 and Claim 2 (see Appendix 1.1):

ns(h(K)) ≤ 9

4

N3/2

N√
2
−
√
N

=
9

4

N√
N
2
− 1

=
9

4

√
2

N√
N −

√
2

=
9
√

2

4
(1 + oN(1))

√
N.

(20)

Thus, for some C > 0 we have ns(f) ns(f̂) ≤ CN.
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III. Applications of the uncertainty principle

In Chapter II, we introduced a mixed-norm uncertainty principle and demon-

strated that near equality is achieved with a discretized and periodized Gaussian. In

this chapter, we will discuss two applications of these results. First, we will show a fun-

damental limitation of the demixing problem, namely, that demixing N -dimensional

K-sparse signals is only stably possible in the worst case if K = O(
√
N). Second, we

will show how to detect K-sparse signals with only O(K) measurements.

3.1 Limitations of the demixing problem

The main idea of demixing is that if a signal x which is sparse in the Fourier

domain is corrupted with noise ε that is sparse in the time domain, then we can use

compressed sensing methods to reconstruct the original signal x given the corrupted

signal z = x+ ε. This reconstruction is done by solving

v? = argmin ‖v‖1 subject to [I F ]v = Fz,

where the solution v? is a vertical concatenation of Fx and ε.

Coherence-based guarantees in [22] show that it suffices for v? to be K-sparse

with K = O(
√
N) while RIP-based guarantees in [6] allow for K = O(N) if [I F ]

is replaced with a random matrix. We refer to this disparity as the square-root

bottleneck. In particular, does [I F ] perform similarly to a random matrix or is the

coherence-based sufficient condition on K also necessary? Despite being studied in

both [10] and [18], this fundamental problem has gone unsolved for general N until

now. In this section, we use numerical sparsity to show that Φ = [I F ] cannot break

the square-root bottleneck. We begin with a definition:
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Definition 5. Let Φ ∈ CM×N . We say that Φ satisfies the C-width property if

‖x‖2 ≤
C√
K
‖x‖1 ∀x ∈ Ker(Φ).

The following theorem is provided in [23] and [24]:

Theorem 10. Define

∆(y) := argmin ‖x‖1 such that Φx = y.

Then ∃C > 0 such that

‖∆(Φx)− x‖2 ≤
C√
K
‖x− xK‖1 ∀x ∈ RN

if and only if ∃c > 0 such that

‖x‖2 ≤
c√
K
‖x‖1 ∀x ∈ Ker(Φ).

Furthermore, C � c in both directions of the equivalence.

Based on Definition 3, the C-width property is equivalent to having

ns(x) ≥ K/C2 ∀x ∈ Ker(Φ).

Let Φ = [I F ] and h(K) be defined as in (11). Take x ∈ C2N such that

x =

 h(K)

−h(K)

 (21)

for K =
√
N . We know that x ∈ Ker Φ. We will show that ns(x) ≤ C

√
M . This is
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significant because by Theorem 10, it provides a converse to the square-root bottleneck

for this well-studied matrix. The proof of this statement requires the use of the

following lemma:

Lemma 10. For x as defined in (21), ns(x) = 2 ns(h(K)).

Proof. We will first show that ‖x‖21 = 4‖h(K)‖21. The definition of x and h(K) gives

‖x‖1 =
2N∑
i=1

|xi|

=
N∑
i=1

|xi|+
2N∑

i=N+1

|xi|

=
N∑
i=1

|h(K)[i]|+
N∑
i=1

| − h(K)[i]| = 2
N∑
i=1

|h(K)[i]| = 2‖h(K)‖1.

Squaring the above yields ‖x‖21 = 4‖h(K)‖21. Next, we will show that ‖x‖22 = 2‖h(K)‖22.

Similar to the above by definition,

‖x‖22 =
2N∑
n=1

|xn|2

=
N∑
n=1

|xn|2 +
2N∑

n=N+1

|xn|2

=
N∑
n=1

|h(K)[n]|2 +
N∑
n=1

| − h(K)[n]|2 = 2
N∑
n=1

|h(K)[n]|2 = 2‖h(K)‖22.

Combining the above results gives us

ns(x) =
‖x‖21
‖x‖22

=
4‖h(K)‖12

2‖h(K)‖22
= 2 ns(h(K)),

completing the proof
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Therefore, based on Lemma 10 and (20) we have

ns(x) ≤ 9
√

2

2

N√
N −

√
2

=
9√
2

(1 + oN(1))
√
N,

as desired.

3.2 Fast detection of sparse signals

In this section, we will show that with high probability, an arbitrary K-sparse

signal can be detected using O(K) measurements. We want to be able to distinguish

between a sparse signal and the zero signal. Therefore, we are testing the following

hypotheses:

H0 : x = 0

H1 : ‖x‖22 =
N

K
, ‖x‖0 ≤ K.

Here, we assume we know the 2-norm of the sparse vector we intend to detect, and

we set it to be
√
N/K without loss of generality (this choice of scaling will help us

interpret our results later). We will assume the data is accessed according to the

following query-response model:

Definition 6 (Query-response model). If the ith query is ni ∈ ZN , then the ith

response is (Fx)[ni] + εi, where the εi’s are iid complex random variables with some

distribution such that

E|εi| = α, E|εi|2 = β2.

The coefficient of variation v of |εi| is defined as

v2 =
Var |εi|
(E|εi|)2

=
β2 − α2

α2
.
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Note that for any scalar c 6= 0, the mean and variance of |cεi| are |c|α and |c|2 Var |εi|,

respectively. Hence, v is scale invariant and is simply a quantification of the “shape”

of the distribution of |εi|. We will evaluate the responses to our queries with an

`1-detector, defined below.

Definition 7 (`1-detector). Fix a threshold τ . Given responses {yi}Mi=1 from the

query-response model, if
M∑
i=1

|yi| > τ,

then we reject H0.

The following is the main result of this section:

Theorem 11. Suppose α ≤ 1/(8K). Randomly draw M independent indices uni-

formly from ZN , input them into the query-response model and apply the `1-detector

with threshold τ = 2Mα to the responses. Then

Pr

(
reject H0

∣∣∣∣H0

)
≤ p

and

Pr

(
fail to reject H0

∣∣∣∣H1

)
≤ p+ q

provided M ≥ 4K/q + v2/p.

In words, the probability that the `1-detector delivers a false positive is p and

the probability that it delivers a false negative is p + q. These error probabilities

can be estimated better given more information about the distribution of the random

noise, and the threshold τ can be modified to decrease one error probability at the

price of increasing the other. Notice that we only use O(K) samples in the Fourier

domain to detect a K-sparse signal. Since the sampled indices are random, it will take

O(logN) bits to communicate each query, leading to a total computational burden
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of O(K logN) operations. We suspect K-sparse signals cannot be detected with

substantially fewer samples (in the Fourier domain or any domain).

We also note that the acceptable noise magnitude α = O(1/K) is optimal in some

sense. To see this, consider the case where K divides N and x is a Dirac comb of K

deltas. Then Fx is a Dirac comb of N/K deltas. (Thanks to our choice of scaling,

each delta in the Fourier domain has unit magnitude.) Since a proportion of 1/K

entries is nonzero in the Fourier domain, we can expect to require O(K) random

samples in order to observe a nonzero entry, and the `1-detector will not distinguish

the entry from accumulated noise unless α = O(1/K). We will use the following

lemmas to prove Theorem 11.

Lemma 11. Suppose ‖x‖0 ≤ K and ‖x‖22 = N/K. Draw n ∼ Unif(ZN) and define

Y := |(Fx)[n]|. Then

EY ≥ 1

K
, EY 2 =

1

K
.

Proof. By Lemma 4 we know ns(x) ≤ ‖x‖0 ≤ K, and Theorem 6 gives

N ≤ ns(x) ns(Fx) ≤ K ns(Fx).

Rearranging and the definition of numerical sparsity then gives

N

K
≤ ns(Fx) =

‖Fx‖21
‖Fx‖22

=
‖Fx‖21
‖x‖22

=
‖Fx‖21
N/K

where the second to last equality is due to Plancherel’s Theorem. Thus ‖Fx‖1 ≥

N/K. Then

EY =
1

N

∑
n∈ZN

Yn =
1

N

∑
n∈ZN

|(Fx)[n]| = 1

N
‖Fx‖1 ≥

1

K
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and

EY 2 =
1

N

∑
n∈ZN

Y 2
n =

1

N

∑
n∈Zn

|(Fx)[n]|2 =
1

N
‖Fx‖22 =

1

K
.

Lemma 12. Take ε1, . . . , εM to be iid complex random variables with E|εi| = α and

E|εi|2 = β2. Then

Pr

(
M∑
i=1

|εi| ≤Mα

)
≥ 1− p

provided M ≥ v2/p, where v is the coefficient of variation of |εi|.

Proof. Chebyshev’s inequality gives

Pr (|X − EX| > t) ≤ VarX

t2
.

Take X =
∑M

i=1 |εi|. Then

EX =
M∑
i=1

E|εi| = ME|εi| = Mα

and

VarX = M Var |εi| = M(E|εi|2 − (E|εi|)2) = M(β2 − α2).

Thus,

Pr

(
M∑
i=1

|εi| > Mα + t

)
= Pr

(
M∑
i=1

|εi| −Mα > t

)

≤ Pr(|X − EX| > t) ≤ VarX

t2
=
M(β2 − α2)

t2
.

Take t = Mα. Then

Pr

(
M∑
i=1

|εi| > 2Mα

)
≤M

(β2 − α2)

(Mα)2
=
β2 − α2

Mα2
≤ β2 − α2

α2
· p
v2

= p.
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which gives the result.

Lemma 13. If M ≥ 4K/q + v2/p, and a ≤ 1/(8K), then

Pr

(
M∑
i=1

|yi| < τ

∣∣∣∣‖x‖0 ≤ K, ‖x‖22 =
N

K

)
= p+ q.

Proof. We know that

Pr

(
M∑
i=1

|yi| ≤ 2Ma

)
≤ Pr

(
M∑
i=1

Yi −
M∑
i=1

|εi| ≤ 2Ma

)
. (22)

For simplicity let b =
∑M

i=1 Yi −
∑M

i=1 |εi|. By Lemma 12, we then have

Pr(b ≤ 2Mα) = Pr

(
b ≤ 2Mα

∣∣∣∣ M∑
i=1

|εi| > 2Mα

)
Pr

(
M∑
i=1

|εi| > 2Mα

)

+ Pr

(
b ≤ 2Mα

∣∣∣∣ M∑
i=1

|εi| ≤ 2Mα

)
Pr

(
M∑
i=1

|εi| ≤ 2Mα

)

≤p+ Pr

(
M∑
i=1

Yi ≤ 4Mα

)
. (23)

Chebyshev’s inequality gives

Pr(|X − EX| > t) ≤ VarX

t2
.

Taking X =
∑M

i=1 Yi, Lemma 11 gives EX = MEYi ≥ M
K

and VarX = M VarYi.

Thus,

Pr

(
M∑
i=1

Yi <
M

K
− t

)
≤ Pr(X ≤ EX − t) ≤ Pr(|X − EX| > t) ≤ Var(X)

t2
≤ M

Kt2
.
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Taking t = M/(2K) gives

Pr

(
M∑
i=1

Yi ≤ 4Mα

)
≤ Pr

(
M∑
i=1

Yi ≤
M

2K

)

= Pr

(
M∑
i=1

Yi ≤
M

K
− t

)

≤ M

Kt2
=
M

K

(
2K

M

)2

=
4K

M
< q. (24)

Combining (22), (23), and (24) gives the result.

Thus, Lemma 13 and 12 together prove Theorem 11.
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IV. Fast hyperspectral imaging using compressed sensing

Astronomers have been attempting to analyze the spectra of stars for over a

hundred years [25]. With modern technology, scientists can look at hyperspectral

images of stars and use the data to determine their chemical makeup. This concept

is known as spectroscopy. The main phenomena of interest are absorption lines in the

spectral bands. Absorption lines are a significant drop in the intensity of the light at

a given frequency, or spectral band, compared to the distribution of the surrounding

spectral bands (see Figure 6). The locations of these absorption lines can be matched

with the light emitted from super heating particular elements of the periodic table,

which then allows scientists to determine the chemical composition of a star.

Conventional hyperspectral cameras are slow. Different methods of hyperspectral

imaging either require time to process the entire space desired or greatly limit the

number of spectral bands [27]. Before describing these methods, it is helpful to intro-

duce some notation. Let X = f(x, y, λ) be a function representing the hyperspectral

image we wish to measure. This data cube is made up of two spatial dimensions with

coordinates represented by x and y and one spectral dimension whose coordinate is

represented by λ. In particular, for any fixed spatial coordinates (x, y), varying λ

gives the spectrum of light received at (x, y).

There are two conventional methods for hyperspectral imaging: spectral scanning

and spatial scanning. Spectral scanning involves the use of filters, such as bandpass

filters, to collect a two-dimensional slice of X that contains only one fixed spectral

band λ and all spatial information. Filters are commonly installed on wheels that

rotate in front of the lens, allowing only one spectral band to be captured at a

time [13, 27]. Thus, time is needed to collect all spectral bands in X.

There are two types of spatial scanning methods. Point-scanning (or whisk-broom)

methods rely on moving mechanical parts in the camera. This method uses a mirror
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Figure 6. Spectrum of a star (object identification number 587722953303982115) from
the Sloan Digital Sky Survey [26]. Here, we see the spectrum of this star over a
wavelength range of 400-900 nm. As such, this data includes both visible and infrared
light. Though the data is noisy, there are at least seven distinct absorption lines
throughout the spectra.

to scan across all x coordinates of X for each y coordinate. The mirror then reflects

the light from a fixed point in space through a pinhole and then a prism that disperses

the light before it is recorded by charge-coupled device (CCD). Therefore, spectral

information of only one point in space is captured by the camera at a time. The need

to scan in both spatial directions is time consuming and requires complex hardware

that is prone to degrade over time. On the other hand, whisk-broom scanning has

the advantage of only requiring one detector to calibrate [13, 27].

The line-scanning (or push-broom) method involves passing light through a ver-

tical slit so that all spectral bands of the desired image are collected for some fixed

spatial coordinate x. Therefore, a two-dimensional slice of the data cube is collected

(with one spatial and one spectral dimension). The light is passed through a prism

that disperses the different frequencies before it is collected by a CCD [13, 27]. The

major limitations of the spatial scanning methods are (1) the amount of time it takes
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Figure 7. Schematic for the coded aperture snapshot spectral imager [27]. The coded
aperture mask in question is a micro-mirror array and a prism is used as the disperser.
In this chapter, we consider a similar sensing platform, which we model in Section 4.1

for the long exposure required to image each portion of the data cube and (2) the

necessity to move the camera in order to capture each portion.

Luckily, the distribution of stars throughout space is highly sparse. Therefore,

instead of using time-consuming scanning methods to collect hyperspectral data, we

can apply compressed sensing methods. The mechanism we will use is similar to

other spectroscopy mechanisms in that it involves the use of a prism or some other

dispersion device before the data is collected on a CCD.

Unlike other spectroscopy platforms, this platform makes use of a micro-mirror

array (MMA) [15], that is, a rectangular grid of mirrors, each corresponding to a

spatial location (x, y). Each mirror is oriented either to reflect all available light at

(x, y) through the prism onto the CCD or to reflect that light away from the prism

and CCD so that it is not measured (see Figures 4 and 7). Therefore, instead of

measuring the data cube one slice at a time, we measure various combinations of data

cube entries. We intend to exploit the data cube’s sparsity in order to reconstruct it

from these measurements.

Other methods of compressive hyperspectral imaging have been developed re-

cently. One method is called chromotomography, which is a generalized scanning

method that does not require spatial filtering such as the slit used in line scanning
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methods. Rather, chromotomography involves a rotating prism [11, 27]. A disadvan-

tage of this method is that the dispersion elements required are difficult to produce

[27]. Another method is called coded aperture imaging, which is a snapshot method

that uses coded apertures (e.g., MMA) in place of other spatial filtering devices used

for scanning methods [28, 29]. The model we propose is similar to the coded aperture

systems developed in [28, 29].

4.1 Modeling the sensor

Let X = f(x, y, λ) be a data cube like that in Figure 3 with spatial dimensions

of sizes J and L and with N spectral bands, that is, X ∈ RJ×L×N . The entire

measurement platform (i.e., the MMA, prism, and CCD) can be represented as a

linear operator Av, where v represents the orientation of the MMA’s mirrors. We

will construct Av in terms of two operators Φv and Ψ such that Av = ΨΦv, where

Φv is a model of the MMA and Ψ is a model of the prism and CCD combined. As

mentioned in the previous section, the MMA either reflects all spectral bands for a

given point (x, y) towards the prism and CCD or reflects all spectral bands away from

the CCD. As such, the MMA transforms the data cube according to a linear operator

Φv : RJ×L×N → RJ×L×N defined by

Φvδ(x,y,λ) := v(x,y)δ(x,y,λ) (25)

where v(x,y) = 1 if the mirror at (x, y) allows light through and is otherwise zero. Next,

the prism disperses the different frequencies of light by different amounts before the

CCD records light intensities. We model this by normalizing x, y and λ so that

x ∈ {1, . . . , J}, y ∈ {1, . . . , L} and λ ∈ {1, . . . , N}, and then modeling the dispersion
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process with a linear operator Ψ : RJ×L×N → RJ×(L+N−1) defined by

Ψδ(x,y,λ) := δ(x,y+λ−1). (26)

That is, light at (x, y) of wavelength λ contributes to the (x, y + λ + 1)th entry of

the CCD. Indeed, in our model, the prism is oriented so that dispersion acts in the

y direction. At this point, we note that (ΨΦvX)[x, ·] is completely determined by

X[x, ·, ·], meaning we may simplify our analysis by considering these slices of X in

parallel. As such, for the remainder of this thesis, we will assume J = 1 without loss

of generality.

Let’s briefly describe the matrix representation of Av. We choose the identity basis

for both R1×L×N and R1×(L+N−1). Specifically, we order the basis elements of R1×L×N

as δ(1,1,1), δ(1,1,2), . . . , δ(1,1,N), δ(1,2,1), . . . , δ(1,L,N). Then z is a vector of coefficients of

X in this basis. By (25), Φv is a multiplication operator that only depends on y.

As such, its matrix representation in this basis is a diagonal matrix composed of L

diagonal blocks, where the yth block is v(1,y)IN×N . By (26), Ψ is a translation and sum

operator that depends on y and λ. The matrix representation uses the translation

operator T , where

T y−1δλ := δy+λ−1

for identity basis elements δλ ∈ `(ZL+N−1). We apply this cyclic translation with the

help of a zero-padding matrix:

B :=

 IN×N

0L−1×N

 .
We then write

Ψ := [B T 1B · · · TL−1B]. (27)
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Overall, we have the measurement matrix Av = ΨΦv when the MMA mirrors are

oriented according to v. Given multiple exposures with varying MMA orientations

{vi}Qi=1, our observations can be organized as y = Az, where

A =


Av1

...

AvQ

 . (28)

In total, A has M := Q(N + L− 1) rows and P := LN columns.

4.2 Modeling the data cube

Recall from the previous section that the data cube is 1× L×N without loss of

generality, and we reshape this cube to form the vector z ∈ RLN = RP . In particular,

the first length-N block of z corresponds to the spectrum with spatial coordinates

(1, 1) and the second length-N block corresponds to (1, 2), etc. Since the scene will

only have a few stars, we have that z is sparse, with the yth block giving the spectrum

of the star at (1, y) unless no such star exists, in which case the yth block is identically

zero. Therefore, the nonzero entries of z are clustered into blocks, and we say that z

is block sparse, as defined below.

Definition 8 (Block sparsity). Let z be a vector of length P such that z is a concate-

nation of blocks of length N . We say that z is K-block sparse if at most K blocks in

z are nonzero. We denote the nth block of z by zn.

When a star is present in the data, we model the spectral radiance of the star

as black-body radiation. As such, we use Planck’s Law as part of our model of the

nonzero blocks of z [30].
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Figure 8. Example of star simulated in MATLAB with temperature of 6380.9 K and
ten absorption lines using stardata.m (See Appendix B). This curve closely resembles
the real-world data in Figure 6.

Definition 9 (Planck’s Law). The spectral radiance of a black body is a function of

wavelength and temperature:

L(λ, T ) =
2hc2

λ5

[
exp

(
hc

λkT

)
− 1

]−1
,

where c, h and k are the speed of light, the Planck constant, and the Boltzmann con-

stant, respectively. Additionally, λ is wavelength in meters and T is temperature in

Kelvin.

As mentioned in the beginning of this chapter, absorption lines in the spectral

radiance of stars indicate the elements that are present in said star. We can identify

what elements are present because these absorption lines are the negative of the

emission lines generated when those elements are heated to extreme temperatures [31].

In the absence of interference, these lines exhibit Lorentzian shapes [32, 33]. For each

star, we model s absorption lines in the spectral data as negative Lorentzian functions.
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In particular, an absorption line at wavelength λi is given by

Hi(λ) := − α

1 + (λ− λi)2/β
, (29)

where α and β are shape parameters. Data collected for a star with absorption lines

at λ1, . . . , λs is modeled as L(λ, T ) +
∑s

k=1Hk(λ). Figure 8 illustrates an example of

this simulated data.

4.3 Block orthogonal matching pursuit

In this section, we define the block orthogonal matching pursuit (BOMP) al-

gorithm and conditions for guaranteed reconstruction of the desired data. Take

A ∈ RM×P and let z ∈ RP be a K-block sparse vector with blocks of size N = P/L.

BOMP is an iterative greedy algorithm that recovers z from w = Az. Let Ai be the

ith M ×N block of A and zj be the jth block of z. Initialize I0 to be the empty set,

the residual r0 = w, and z0 as the zero vector. On the lth iteration of BOMP, an

additional element of the support I is found:

I l = I l−1 ∪
{

arg max
i∈ZN

‖A∗i rl−1‖2
}
. (30)

Then given I l, we solve for zl using least-squares minimization:

zl = arg min
z̃

∥∥∥∥∥w −∑
i∈Il

Aiz̃i

∥∥∥∥∥
2

. (31)

Lastly, we update the residual:

rl = w −
∑
i∈Il

Aiz
l
i. (32)
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In the case of traditional sparsity, if a matrix A has small coherence, defined below,

it has been shown that A can be used to successfully recover any sparse signal.

Definition 10 (Coherence). For a matrix A, define the coherence of A, µ(A) as

µ(A) := max
i,j 6=i
|a∗i aj|

Specifically, it is known that orthogonal matching pursuit will recover any K-

sparse z from w = Az provided µ > (2K − 1)−1 [9]. Eldar et al. [16] developed two

analogous coherence definitions that lead to a similar guarantee for block orthogonal

matching pursuit. They define block-coherence as follows:

Definition 11 (Block-coherence). For A = [A1 · · ·AL] with M × N blocks Ak, we

define the block-coherence of A to be

µB(A) := max
i,j 6=i

1

N
‖A∗iAj‖2→2

Notice that Definition 11 does not account for pairs columns within a common

block of A. These columns are considered by sub-coherence:

Definition 12 (Sub-coherence). For A = [A1 · · ·AL] with M×N blocks Ak, we define

the sub-coherence of A to be

ν(A) = max
k

max
i,j 6=i
|(a(k)i )∗a

(k)
j |,

where a
(k)
i and a

(k)
J are columns of Ak.

Definitions 11 and 12 lead to a block version of the coherence condition [16]:

Theorem 12. Let z ∈ CP be a K-block sparse vector with block length N = P/L

and w = Az for A ∈ CM×P with columns of unit 2-norm. For BOMP to recover z, it
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suffices that

KN <
1

2

(
1

µB(A)
+N − (N − 1)

ν(A)

µB(A)

)
.

Furthermore, BOMP converges to z in at most K steps, a vast improvement on

the KN steps that would be required with OMP.

4.4 Performance guarantee for fast hyperspectral imaging

In this section, we will show that the sensor model in Section 4.1 satisfies the con-

ditions in Theorem 12 for recovery using block orthogonal matching pursuit (BOMP).

We begin with a definition:

Definition 13. A matrix V ∈ {0, 1}Q×L is said to be an (R, γ)-incoherent design if

(i) every column of V has exactly R ones.

(ii) every pair of columns has at most γ ones in common.

The following is the main result of this section:

Theorem 13. Take A as defined in (28), where each vq is given by a different row of

an (R, γ)-incoherent design. The BOMP algorithm will recover any K-block sparse z

from w = Az provided

K <
1

2

(
R

γ
+ 1

)
.

The proof of Theorem 13 relies on the following lemma:

Lemma 14. Take A as defined in (28), where each vq is given by a different row of

an (R, γ)-incoherent design. Then

µB(A) ≤ γ

N
.
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Proof. Note that for i 6= j, we have from (27) that

ATi Aj =

Q∑
k=1

(Avk)
T
i (Avk)j

=

Q∑
k=1

(T i−1Bvk(i)I)T (T j−1Bvk(j)I)

=

(
Q∑
k=1

vk(i)vk(j)

)
BTT−(i−1)T j−1B = 〈Vi, Vj〉BTT j−iB,

where Vi denotes the ith column of the (R, γ)-incoherent design matrix V . Then

‖ATi Aj‖2→2 =
∥∥〈Vi, Vj〉BTT j−iB

∥∥
2→2

≤ |〈Vi, Vj〉|‖BT‖2→2‖T i−j‖2→2‖B‖2→2 = |〈Vi, Vj〉| ≤ γ,

where the last inequality uses the fact that any pair of columns of V have at most γ

ones in common. Definition 11 then gives the result:

µB(A) =
1

N
max
i 6=j
‖ATi Aj‖2 ≤

γ

N
.

We can now prove the main result:

Proof of Theorem 13. Note that BOMP recovers z from w = Az if and only if it

recovers z from w̃ = (1/
√
R)Az. As such, it suffices to check that Ã := (1/

√
R)A

satisfies the conditions of Theorem 12. First, Ã has columns of unit 2-norm due to

the scaling. Since Ã is composed of orthogonal columns, we have ν(Ã) = 0. As such,

it suffices to have

NK <
1

2

(
1

µB(Ã)
+N

)
=

1

2

(
R

µB(A)
+N

)
.

Lemma 14 then gives the result.
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At this point, we note that Theorem 3 in [34] gives a construction of a Q × L

(R, 1)-incoherent design, where R is the smallest integer satisfying L ≤ 4R2 log2(2R)

and Q := d4R2 log(4R)e. As such, the number of exposures is Q = O(L/ logR) =

O(L/ logL), and we can have K = O(R) = O(
√
L/ logL). We note that this number

of exposures is a vanishing fraction of L, i.e., the number of exposures required by

spatial scanning. As such, this imaging system is legitimately compressive. Also, the

number of active blocks we allow scales according to a square-root bottleneck, which

we should expect from a coherence-based guarantee.

4.5 Simulations

In this section, we demonstrate the utility of BOMP when applied to spectroscopy.

We can break down our simulations into three steps: (1) simuating of the data cube,

(2) simulating of the sensor, and (3) recovering the data.

First, we produced simulated data according to the description in Section 4.1 (see

Appendix B for MATLAB code). In particular, we created a 1× 100× 100 data cube

X of stars in space. For our simulation, spectral bands range from 400 nm to 895 nm

at increments of 5 nm. The temperature T of a star is chosen uniformly at random

from a range of 4000K to 10000K. Each star is simulated with ten absorption lines,

each at random wavelengths {λ1, . . . , λ10} drawn uniformly from the range of spectral

bands. These absorption lines are simulated with negative Lorentzian distributions

as in (29), where αk and βk are height and width parameters respectively for the kth

absorption line. Specifically, αk is chosen uniformly from a range of 0 to 2 nm and βk

is chosen uniformly from a range of 0 to L(λk, T )/2, where L(λk, T ) is the spectral

radiance at wavelength λk from Definition 9. Figure 8 is an example of the star data

simulated in MATLAB. Throughout the simulations, we take the block sparsity level

to be K ≤ 3, which is reasonable considering there should not be many stars in any
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Figure 9. The proportion of 150 randomly generated 1× 100× 100 data cubes X which
are recovered using BOMP (see Appendix B for MATLAB code). The solid line shows
the proportion of data cubes with block sparsity level K = 1 that were recovered, the
dotted line shows the proportion for K = 2, and the dash-dotted line illustrates the
K = 3 case.

given 1 × 100 × 100 data cube slice. Once X is generated, we create a block sparse

vector z from X by reshaping.

Next, we simulate taking Q exposures with the sensing platform using the mea-

surement matrix A described in Section 4.1. We let the mirrors in the MMA have

random orientation, meaning the entries of V are iid Bernoulli with some probability

parameter p. As such, the columns of V will have different numbers of ones, and so

V will not be an incoherent design as defined in Section 4.4. Still, we take inspiration

from Theorem 13 by taking p to be somewhat small. Indeed, each column will tend

to have about Qp ones, and pairs of columns will tend to have about Qp2 ones in

common. Thus, the natural proxy for R/γ is (Qp)/(Qp2) = 1/p, and so Theorem 13

suggests that we should take p small in order to sense signals with large block sparsity

K. For our simulations, we take p = 1/4.

Finally, after generating w = Az, we use BOMP as defined in Section 4.3 to get
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a solution z̃. In these simulations, A is Q(N + L − 1) × LN = 199Q × 10000, and

we let Q range up to 30. As such, A is too large to implement naively on a standard

desktop. We therefore hard-coded how each of the blocks of A (and their transposes)

act on a given vector (see MATLAB code in Appendix B). This led to significant

speedups in calculating w = Az and in running BOMP.

Number of exposures for recovery.

In the first simulation, we generated data cubes with varying sparsity levels K and

observed the performance of BOMP using Q ∈ {1, . . . , 30} exposures. For each data

cube, BOMP ran for K iterations. For each value of Q, we performed BOMP on 150

random data cubes to produce the estimate z̃, and we declared successful recovery if

‖z − z̃‖2 < 10−14. Figure 9 illustrates the proportion of trials that were successful for

block sparsity level K = 1 (solid line), K = 2 (dotted line), and K = 3 (dash-dotted

line). As we can see, it suffices to have Q = 13 exposures for successful recovery when

K = 1. Also, 90 percent of the data cubes with block sparsity K = 2 and K = 3 are

successfully recovered from 22 and 30 exposures, respectively.

The effect of noisy measurements.

In the second simulation, we add Gaussian random noise to our measurements.

Specifically, we measure a data cube with block sparsity level K = 3 and Q = 30

exposures, resulting in measurements of the form w = Az + ε, where ε is a vector

composed of iid Gaussian random variables with mean zero and standard deviation

0.008. Figure 10(a) shows the true spectral radiance of one of the stars in z, and

Figure 10(b) shows the spectral radiance of the reconstruction using K iterations

of BOMP. As we can see, shallow absorption lines (located at wavelengths 560 nm,

815 nm, and 825 nm in our example) are drowned out by the noise. In practice, one
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Figure 10. (a) The spectrum of one of the three simulated stars, all of which were
measured in the presence of Gaussian noise. (b) Reconstruction of the same star’s
spectrum using BOMP. Notice that the three most shallow absorption lines (at 560,
815, and 825 nm) were lost in the noise.

might overcome this apparent loss of information by fitting spectra of chemicals to

the absorption line locations and depths. Indeed, the star’s chemical composition is

precisely the objective of spectroscopy.
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V. Conclusions and future work

In this chapter, we summarize our results and discuss future research.

5.1 Discrete uncertainty principles and applications

In Chapter II, we discussed the 0-norm uncertainty principle and gave a concise

proof of the Donoho–Stark uncertainty principle developed in [8]. Additionally, we

introduced and characterized equality in a new mixed-norm uncertainty principle.

We also showed that a discretized and periodized Gaussian achieves near equality in

both the Donoho–Stark and mixed-norm uncertainty principle. In Chapter III, we

applied these results to demonstrate a fundamental limitation in signal demixing and

to detect K-sparse signals from only O(K) measurements.

For future work, it would be interesting to apply this new uncertainty principle to

the fundamental problem of compressed sensing with a partial Fourier matrix [35, 36].

Specifically, how many random rows M of the N × N discrete Fourier transform

matrix are necessary to satisfy the (K, δ)-restricted isometry property? Recently,

Bourgain [36] demonstrated that M = Oδ(K log3N) rows suffice, whereas Gaussian

matrices only need M = Oδ(K log(N/K)) [6]. Recall that in Section 3.2, we used

our uncertainty principle to show that if ‖x‖0 ≤ K and ‖x‖22 = N/K, then a random

partial Fourier matrix A satisfies ‖Ax‖1 � 0 with high probability provided M =

O(K). Since the RIP problem is so similar, we suspect that similar ideas might apply.

5.2 Fast hyperspectral imaging

In Chapter IV, we discussed the hyperspectral imaging problem in the context of

spectroscopy of stars. We briefly described conventional hyperspectral platforms and

their limitations before proposing a compressed sensing platform that can quickly
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sample hyperspectral data. Using combinatorial designs, we built coded apertures

that can be used to quickly collect hyperspectral data, and from which we can quickly

recover the desired imagery using block orthogonal matching pursuit.

For future work in this direction, we are particularly excited about real-world

implementation. This will bring its own challenges, such as calibration and non-

Gaussian noise, but we suspect the theory is robust to such deviations, and it would

be interesting to explicitly include them in the theory.

Also, we currently use random coded apertures, but with each exposure, the micro-

mirrors need to mechanically change their orientation. In the real world, these changes

in orientation cost energy, which is a limited resource in remote sensing platforms.

As such, one possible area for future research would be to develop incoherent designs

for which changes in orientation are minimized.
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Appendix A. Supporting material

1.1 Harmonic analysis background

For this section define χ as in Section 2.1. The following claim helps establish the

assumptions needed for Definition 1.

Claim 1. The dual of G, Ĝ := {χ} is an abelian group.

Proof. Let g1, g2 ∈ G and χ1, χ2 ∈ Ĝ,

χ1χ2[g1 + g2] = χ1[g1 + g2]χ2[g1 + g2]

= χ1[g1]χ1[g2]χ2[g1]χ2[g2] = χ1[g1]χ2[g1]χ1[g2]χ2[g2] = χ1χ2[g1]χ1χ2[g2].

Therefore, χ1χ2 ∈ Ĝ so Ĝ is closed. Define e(g) := 1 ∀g ∈ G. Then

e[g1 + g2] = 1 = 1 · 1 = e[g1]e[g2],

meaning e ∈ Ĝ, and so Ĝ has an identity element. Define φ[g] := 1/χ[g] ∀g ∈ G

φ[g1 + g2] =
1

χ[g1 + g2]
=

1

χ[g1]χ[g2]
=

(
1

χ[g1]

)(
1

χ[g2]

)
= φ[g1]φ[g2].

Therefore, φ ∈ Ĝ. Let g be an arbitrary element of G. Then

(φχ)[g] = φ[g]χ[g] =
1

χ[g]
χ[g] = 1 = e[g],

and so φ = χ−1. Thus, Ĝ is a group. Lastly,

(χ1χ2)[g] = χ1[g]χ2[g] = χ2[g]χ1[g] = (χ2χ1)[g],

and so Ĝ is an abelian group.
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The following Claims help establish that Ĝk = Ĝk.

Claim 2. For all χ ∈ Ĝ,
∑

g∈G χ[g] = 0.

Proof. Let χ ∈ Ĝ and fix g2 ∈ G such that χ[g2] 6= 1.

∑
g1∈G

χ[g1]χ[g2] =
∑
g1∈G

χ[g1 + g2] =
∑
g1∈G

χ[g1].

where the last equality is true by the closure of G. Rearranging,

∑
g1∈G

χ[g1] (χ[g2]− 1) = 0.

We know χ[g2]− 1 6= 0 because g2 is arbitrary so
∑

g∈G χ[g] = 0.

Because
∑
χ[g] = 0 we can show that Ĝ consists of orthogonal elements of `(G,C).

In fact, Ĝ is an orthonormal basis for `(G,C).

Claim 3. {χ}χ∈Ĝ is an orthonormal basis for `(G,C).

Proof. Let χ ∈ Ĝ. First, we will show that ‖χ‖2 = 1 ∀χ ∈ Ĝ.

〈
1√
|G|

χ,
1√
|G|

χ

〉
=

1

|G|
∑
g∈G

χ[g]χ[g] =
1

|G|
∑
g∈Ĝ

|χ[g]|2 =
1

|G|
∑
g∈G

1 = 1.

Therefore, the statement is true for an arbitrary χ so it is true for all χ ∈ Ĝ. Addi-

tionally, the above shows that χ[g] = χ−1[g]. Second, we will show orthogonality. Let

χ, ψ be arbitrary elements of Ĝ, such that χ 6= ψ. Then,

〈
1√
|G|

χ,
1√
|G|

ψ

〉
=

1

|G|
∑
g∈G

χ[g]ψ[g] =
1

|G|
∑
g∈G

(χψ−1)[g] = 0.

The last inequality comes from the fact that χψ−1 ∈ Ĝ and Claim 2. Therefore

{χ}g∈Ĝ is orthonormal. We know that `(G,C) is a |G|-dimensional vector space
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and that |Ĝ| = |G|. Therefore, {χ}χ∈Ĝ spans `(G,C). Thus, {χ}χ∈Ĝ is a basis for

`(G,C).

Claim 4. If χ1, · · · , χk ∈ Ĝ then χ1 ⊗ · · · ⊗ χk ∈ Ĝk.

Proof. By definition,

(χ1 ⊗ · · · ⊗ χk)[(g1, g2, · · · , gk) + (g′1, g
′
2, · · · , g′k)] = (χ1 ⊗ · · · ⊗ χk)[g1 + g′1, · · · , gk + g′k]

= χ1[g1 + g′1] · · ·χk[gk + g′k]

= χ1[g1]χ1[g
′
1] · · ·χk[gk]χk[g′k]

= (χ1[g1] · · ·χk[gk])(χ1[g
′
1] · · ·χk[g′k]).

The last equality is the definition of (χ1⊗· · ·⊗χk)[g1, · · · , gk](χ1⊗· · ·⊗χk)[g′1 · · · g′k].

Therefore, χ1 ⊗ · · · ⊗ χk ∈ Ĝk.

We have thus proven that {χ1 ⊗ χ2 ⊗ · · · ⊗ χk} ⊂ Ĝk but we can actually prove

set equality.

Claim 5. For χ1, χ2, · · · , χk ∈ Ĝ, {χ1 ⊗ χ2 ⊗ · · · ⊗ χk} = Ĝk

Proof. We need to show that #{χ1⊗χ2⊗· · ·⊗χk} = |Ĝk|. Hence, it suffices to show

that each χ1 ⊗ χ2 ⊗ · · · ⊗ χk is unique. Assume χ1 ⊗ χ2 ⊗ · · · ⊗ χk[h1, h2, · · ·hk] =

ψ1⊗ψ2⊗· · ·⊗ψk[h1, h2, · · · , hk] for all [h1, h2, · · · , hk] ∈ Gk. Let [g1, g2, · · · , gk] ∈ Gk

such that gm = g ∈ G and gn = 0 for all n 6= m. Therefore, by definition

(χ1 ⊗ χ2 ⊗ · · · ⊗ χk)[g1, g2, · · · , gk] = (ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψk)[g1, g2, · · · , gk]

χ1[g1]χ2[g2] · · ·χk[gk] = ψ1[g1]ψ2[g2] · · ·ψk[gk]
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Plugging in our definition of (g1, g2, · · · , gk) we get

χ1[0]χ2[0] · · ·χm[g] · · ·χk[0] = ψ1[0]ψ2[0] · · ·ψm[g] · · ·ψk[0]

χm[g] = ψm[g].

Since g and m are arbitrary, this statement is true for all g ∈ G and m ≤ k. Thus,

χ1 ⊗ χ2 ⊗ · · · ⊗ χk = ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψk. So each χ1⊗, χ2 ⊗ · · · ⊗ χk is unique.

By Claims 3 and 5 we see that Ĝk = Ĝk.

1.2 Poisson summation formula

The use of the Poisson Summation Formula relies on specific assumptions regard-

ing f . It suffices that the function f is in Schwarz Space. A consiquence of f ∈ S is

that f(x) ≤ C/x2 for some C > 0. A quick review of the bounded convergence theo-

rem will be useful as we build the function that achieves near equality in Theorems 2

and 6. The theorem below is a corollary to the bounded convergence theorem.

Lemma 15. Assume,

f(x) =
∞∑

n=−∞

h(xn), fN (x) :=
N∑

n=−N

h(x+ n)

and fN converges pointwise to f . Then

lim
N→∞

∫ 1

0

fN(x)dx =

∫ 1

0

f(x)dx.

Proof. By the triangle inequality and Definition 2, we know that

|fN(y)| =

∣∣∣∣∣
N∑

n=−N

h(x+ n)

∣∣∣∣∣ ≤
N∑

n=−N

|h(x+)| ≤
N∑

n=−N

C

(x+ n)2 + 1
= C

N∑
n=−N

1

(x+ n)2 + 1
.

62



We can break the sum up into negative and nonnegative indices. Hence

C

N∑
n=−N

1

(x+ n)2 + 1
= C

[
−1∑

n=−N

1

(x+ n)2 + 1
+

N∑
n=0

1

(x+ n)2 + 1

]
.

Since x ∈ [0, 1],

C

[
−1∑

n=−N

1

(x+ n)2 + 1
+

N∑
n=0

1

(x+ n)2 + 1

]
≤ C

[
−1∑

n=−N

1

(n+ 1)2 + 1
+

N∑
n=0

1

n2 + 1

]
.

Let ñ := −n. Then

C

[
−1∑

n=−N

1

(n+ 1)2 + 1
+

N∑
n=0

1

n2 + 1

]
= C

[
N∑
ñ=1

1

(ñ− 1)2 + 1
+

N∑
n=0

1

n2 + 1

]
.

Combining terms gives us

C

[
N∑
ñ=1

1

(ñ− 1)2 + 1
+

N∑
n=0

1

n2 + 1

]
= C

[
1 +

N∑
n=1

(
1

(n− 1)2 + 1
+

1

n2 + 1

)]
.

Since n > 0,

C

[
1 +

N∑
n=1

(
1

(n− 1)2 + 1
+

1

n2 + 1

)]
≤ C

[
1 + 2

N∑
n=1

1

(n− 1)2 + 1

]
.

Let n′ = n− 1. Then by change of variables,

C

[
1 + 2

N−1∑
n′=0

1

(n′)2 + 1

]
≤ C

[
1 + 2 + 2

∫ N−1

0

1

y2 + 1
dy

]
≤ C

[
3 + 2

∫ ∞
0

1

y2 + 1
dy

]
.

Evaluating the integral then gives

C

[
3 + 2

∫ ∞
0

1

y2 + 1
dy

]
= C

[
3 + 2 arctan (y)

∣∣∣∣∞
0

]
= C [3 + π] =: M.
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Therefore, ∃M ∈ R such that |fN(y)| ≤ M . Thus, by the bounded convergence

theorem,

limN→∞

∫ 1

0

fn(x)dx =

∫ 1

0

f(x)dx

Another tool necessary to prove the Poisson summation formula is Lemma 16

below.

Lemma 16. If f ∈ S, then

∫ 1

0

∑
n∈Z

f (x+ n) e−2πikxdx =
∑
n∈Z

∫ 1

0

f (x+ n) e−2πikxdx.

Proof. Define hN(x) := fN(x)e−2πikx where fN(x) is defined as in Lemma 15. We

know that hN(x) converges pointwise to f(x)e−2πikx. Thus

|hN(x)| = |fN(x)e−2πikx| = |fN(x)||e−2πikx| ≤M.

Therefore, by Lemma 15

limN→∞

∫ 1

0

N∑
n=−N

g (x+ n) e−2πikxdx =

∫ 1

0

∑
n∈Z

g (x+ n) e2πikxdx. (33)

Additionally, we know

∫ 1

0

hN(x)dx =

∫ 1

0

N∑
n=−N

g (x+ n) e−2πikxdx =
N∑

n=−N

∫ 1

0

g (x+ n) e−2πikxdx. (34)

Taking the limit of both sides of (34) we get

limN→∞

∫ 1

0

N∑
n=−N

g (x+ n) e−2πikxdx =
∑
n∈Z

∫ 1

0

g (x+ n) e−2πikxdx (35)
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Therefore, by (33) and (35) yields,

=
∑
n∈Z

∫ 1

0

g (x+ n) e−2πikxdx =

∫ 1

0

∑
n∈Z

g (x+ n) e2πikxdx.

With Lemma 16 we have a sufficient foundation to prove the Poisson summation

formula [37].

Theorem 14 (Poisson Summation Formula). For some g ∈ S,

∑
n∈Z

g[n] =
∑
k∈Z

(FRg) [k]

Proof. Define f(x) :=
∑

n∈Z g(x + n) and FT as the Fourier transform from R to Z.

Then,

∑
n∈Z

g(x+n) = (F−1T FTf)(x) =
∑
k∈Z

(FTf) [k]e2πikx =
∑
k∈Z

1√
2π

∫ 2π

0

f(x)e−2πikxdxe2πikx.

Substituting in our definition of f(x) yields

∑
k∈Z

1√
2π

∫ 2π

0

f(x)e−2πikxdxe2πikx =
∑
k∈Z

1√
2π

∫ 2π

0

[∑
n∈Z

g(x+ n)

]
e−2πikxdxe2πikx

(36)

=
∑
k∈Z

1√
2π

∑
n∈Z

∫ 2π

0

g(x+ n)e−2πikxdxe2πikx.

Where the last statement is true by Lemma 16. Substituting u = n + x into (36)

gives us ∑
k∈Z

1√
2π

∑
n∈Z

∫ 2π+n

n

g(u)e−2πik(u−n)due2πikx. (37)
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We know that

∑
n∈Z

∫ 2π+n

n

g(u)e−2πik(u−n)du =
∑
n∈Z

∫ 2π+n

n

g(u)e−2πike2πikndu =

∫ ∞
−∞

g(u)e−2πikudu.

because e2πin = 0. Thus, (37) is equivalent to

∑
k∈Z

[
1√
2π

∫ ∞
−∞

g(u)e−2πikudu

]
e2πikx =

∑
k∈Z

(FRg)[k]e2πikx

where the last equality is by the definition of FRg . Therefore,

∑
n∈Z

g(x+ n) =
∑
k∈Z

(FRg)[k]e2πikx.

Evaluating both sides at x = 0, we get

∑
n∈Z

g[n] =
∑
k∈Z

(FRg) [k].

Theorem 14 will be useful for finding the Fourier transform pair needed for near

equality.

Corollary 1. For all f ∈ S,

∑
p∈Z

f(p− s) =
∑
q∈Z

(FRf) (q)e−2πiqs

Proof. Let, h(x) := f(x− s). By definition,

(FRh) (x) :=

∫ ∞
−∞

h(t)e−2πixtdt. (38)
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Substituting t′ = t− s into (38) yields

∫ ∞
−∞

h(t)e−2πixtdt =

∫ ∞
−∞

f(t− s)e−2πixtdt =

∫ ∞
−∞

f(t′)e−2πix(t
′+s)dt′.

We know that ya+b = yayb. Therefore

∫ ∞
−∞

f(t′)e−2πix(t
′+s)dt′ = e−2πixs

∫ ∞
−∞

f(t′)e−2πixt
′
dt′ = e−2πixs (FRf) (x). (39)

By Theorem 14, ∑
p∈Z

h(p) =
∑
q∈Z

(FRh) (q).

Substituting in our definition of h and the result of (39),

∑
p∈Z

f(p− s) =
∑
q∈Z

(FRf) (q)e−2πqs

1.3 Properties of the Gaussian

Claim 6. for all y ∈ C ∫ ∞
−∞

e−y
2

dy =
√
π (40)

Proof. Because x =
√
x2, we can rewrite (40) as

∫ ∞
−∞

e−y
2

dy =

(∫ ∞
−∞

e−y
2

dy

∫ ∞
−∞

e−x
2

dx

)1/2

=

(∫ ∞
−∞

∫ ∞
−∞

e−(y
2+x2)dydx

)1/2

.

Converting to polar coordinates yields

(∫ ∞
−∞

∫ ∞
−∞

e−(y
2+x2)dydx

)1/2

=

(∫ 2π

0

∫ ∞
0

e−r
2

rdrdθ

)1/2

.

67



Let u := r2. Then by change of variables

(∫ 2π

0

∫ ∞
0

e−r
2

rdrdθ

)1/2

=

(
1

2

∫ 2π

0

∫ ∞
0

e−ududθ

)1/2

=

(
π

∫ ∞
0

e−udu

)1/2

=
√
π

which implies the result.

Given the integral of e−y
2

we can easily compute F (e−y
2
).

Claim 7. The Fourier transform of f(x) := e−x
2

is

(Ff)(ξ) = e−π
2ξ2√

π

Proof. By definition of Fourier transform,

(Ff)(ξ) =

∫ ∞
−∞

e−x
2

e−2πiξxdx =

∫ ∞
−∞

e−(x+2πiξx)dx =

∫ ∞
−∞

e−(x+πiξ)
2−π2ξ2

dx

where the last equality is from completing the square. Let u := −xπiξ.

Since f is analytic,

∫ ∞
−∞

e−(x+πiξ)
2−π2ξ2

dx = e−π
2ξ2

∫ ∞
−∞

e−u
2

du =
√
πe−π

2ξ2

where the last inequality is due to Claim 6.

One specific property of the Fourier transform pair defined in Claim 7 is the

property of dilation.

Claim 8. If h(x) := f(mx) for some function f , then

(Fh)(ξ) =
(Ff)

(
ξ
m

)
m
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Proof. By Definition of F : C→ C and h,

(Fh)(ξ) =

∫ ∞
−∞

h(x)e−2πiχxdx =

∫ ∞
−∞

f(mx)e−2πiχxdx =
1

m

∫ ∞
−∞

f(u)e−2πiξ
u
mdu

where the last equality comes from change of variables where u := x/m. Rearranging

gives us the result:

1

m

∫ ∞
−∞

f(u)e−2πiu
ξ
mdu =

1

m
(Ff)

(
ξ

m

)
.

1.4 Supporting claim for Section 2.4

Claim 9 (Geometric Sum Formula). Suppose q, k ∈ Z. Then

n−1∑
j=0

[
e2πi(q−k)/n

]j
=

 n, q−k
n
∈ Z,

0, otherwise .

Proof. Without loss of generality, assume that e2πi(q−k)/n 6= 1. Then

n−1∑
j=0

[
e2πi(q−k)/n

]j
=

[
e2πi(q−k)/n

]n − 1

e
2πi(q−k)

n − 1
=
e2πi(q−k) − 1

e
2πi(q−k)

n − 1
=

1− 1

e
2πi(q−k)

n − 1
= 0.

If e2πi(q−k)/n = 1, then
n−1∑
j=0

[
e2πi(q−k)/n

]j
=

n−1∑
j=0

1 = n.

We know that e2πi(q−k)/n = 1 if and only if 1−k
n
∈ Z. Therefore,

n−1∑
j=0

[
e2πi(q−k)/n

]j
=

 n, q−k
n
∈ Z,

0, otherwise .

completing the proof.
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Appendix B. MATLAB code for Chapter IV

Data simulation

The following MATLAB code simulates the data as described in Section 4.5.

function x=stardata()

% author: 2d Lt Megan Lewis

% description: outputs the data that simulates a "slice" of the sky

% with K stars

M=100; % number of locations

L=100; % number of wavelengths

Fslice=zeros(M,L);

permindices=randperm(M);

K=2; % number of stars (K-sparse)

list=permindices(1:K); % locations of stars

% first we build a slice of the data cube

for kk=1:K

h=6.6260*10^(-34); % planck’s constant

c=2.9979*10^8; % meters per second

k=1.3806*10^(-23); % boltzmann’s constant

T=rand*6000+4000; % Kelvin

lambda=(400:5:895)*10^(-9); % meters

stuff=h*c./(lambda*k*T);

radiance=2*h*c^2./(lambda.^5.*(exp(stuff)-1));

radabs=radiance;

70



lines=10; %number of absorbtion lines

for ell=1:lines

index=ceil(rand*100);

lambda0=lambda(index);

width=rand*2*10^(-9);

height=rand*radiance(index)/2;

radabs=radabs-height./(1+(lambda-lambda0).^2/width^2);

end %for loop

radabs=radabs/norm(radabs);

Fslice(list(kk),:)=radabs;

end %for loop

x=Fslice’;

end %function

Runme file

The following MATLAB code was used in order to perform block orthogonal

matching pursuit (BOMP) for simulated data z and to evaluate if BOMP successfully

reconstructed z.

%--------------------------------------------------------------------------

% author: 2d Lt Megan Lewis

% description: The purpose of this .m file is to run all the functions

% necessary to generate test data, perform BOMP and evaluate the

% performance of the algorithm.
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%Initialization

n=0;

%loop that controls the number of masks or measurements.

for numasks=1:30

%loop that controls the number of iterations per given number of masks.

for runs=1:30

n=n+1;

%Simulates the data that BOMP is trying to recover

z=stardata(3);

[nz, zs]=efficient_bomp(z,numasks, 3);

stars3(n)=norm(zs-nz);

end %run count

end %num masks loop

BOMP

The following MATLAB code runs BOMP by hard-coding the model matrix.

function [nz, zs]=efficient_bomp(z, Q, star)

%--------------------------------------------------------------------------

% Author: 2d Lt Megan Lewis

% Purpose: To do Block orthogonal matching pursuit in a timely manner.

%--------------------------------------------------------------------------

% INPUT

% z=vectorized data cube

% k=sparsity level of z

% Q=number of exposures
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%--------------------------------------------------------------------------

% OUTPUT

% nz=recovered z

%--------------------------------------------------------------------------

% INITIALIZATION

[L, N]=size(z);

zs=reshape(z,[numel(z),1]); %turns data cube into data vector

w=zeros(Q*(N+L-1),1); %initiates w

%The incoherent design we will be taking our mask values from:

V=binornd(1,0.25,Q,L);

%--------------------------------------------------------------------------

% Getting w=Az

for q=1:Q

for l=1:L

w((q-1)*(N+L-1)+1:q*(N+L-1))=w((q-1)*(N+L-1)+1:q*(N+L-1))...

+V(q,l)*[zeros(l-1,1); zs((l-1)*N+1:l*N); zeros(L-l,1)];

end %l for loop

end %q for loop

%--------------------------------------------------------------------------

%INITIALIZATION OF BOMP

bestinds=[];

Id=eye(N);

r=w;

%--------------------------------------------------------------------------

% BOMP

for index=1:star
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%First find argmax||A_i^*r||_2

norms=zeros(L,1);

for l=1:L

temp=0;

for q=1:Q

temp=temp+V(q,l)*r(l+(N+L-1)*(q-1):l+N-1+(N+L-1)*(q-1));

end %q for loop

norms(l)=norm(temp);

end %l for loop

[val ind]=max(norms);

bestinds(index)=ind;

%Next we calculate Aind

Aind=zeros(Q*(N+L-1),length(bestinds)*N);

for ii=1:length(bestinds)

jj=bestinds(ii);

for n=1:N

for q=1:Q

Aind((q-1)*(N+L-1)+1:q*(N+L-1),(ii-1)*N+n)=...

Aind((q-1)*(N+L-1)+1:q*(N+L-1),(ii-1)*N+n)+V(q,jj)*...

[zeros(jj-1,1); Id(:,n); zeros(L-jj,1)];

end %q for loop
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end %n for loop

end %ii for loop

%Calculating ztilde

ztilde=Aind\w; %least squares minimization

% Updating the residuals

r=w-Aind*ztilde;

end % index for loop

%--------------------------------------------------------------------------

% Calculating nz

nz=zeros(size(zs));

for ii=1:length(bestinds)

kk=bestinds(ii);

nz((kk-1)*N+1:kk*N)=ztilde((ii-1)*N+1:ii*N);

end %for loop

end %efficient_bomp
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fast method of detecting sparse signals. The second half of this thesis focuses on a specific application of compressed sensing: hyperspectral imaging.
Conventional hyperspectral platforms require long exposure times, which can limit their utility, and so we propose a compressed sensing platform to quickly
sample hyperspectral data. We leverage certain combinatorial designs to build good coded apertures, and then we apply block orthogonal matching pursuit to
quickly reconstruct the desired imagery.
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